The major portion of these calculations was made using IBM facilities. However, it was found that after certain preliminary computations, it would have been feasible to have found the signs (at the rate of about $100-150$ per day) without the use of automatic computing machinery. The detailed procedures for the calculations of the signs were worked out by Karle, Hauptman \& Christ and will be published separately at a later date.

For the preliminary structure analysis 944 observed $F_{h k l}$'s, together with their signs, were used to calculate electron-density sections over the $x z$ plane at intervals of $1 / 60$ for $y=0$ to $y=1 / 4$. The 944 terms used are those contained within a sphere of radius equal to $\sin \theta / \lambda=$ $0.66 \AA^{-1}$. In order to minimize termination-of-series effects, an artificial temperature factor $\exp \left[-B(\sin \theta / \lambda)^{2}\right]$, with $B=2.5 \AA^{2}$, was multiplied into the observed $F_{h k l}$'s.

Colemanite is monoclinic $P 2_{1} / a$,

$$
a=8.743 \pm 0.004, \quad b=\begin{gathered}
11.264 \pm 0.002, \quad c=6 \cdot 102 \pm 0.003 \AA, \\
\beta=110^{\circ} 7^{\prime},
\end{gathered}
$$

Fig. 1. Composite projection on (010) of the electron-density sections for colemanite. Only a portion sufficient to show the essential features of the structure is given. The small black circles indicate the boron positions, the small open circles the oxygen positions.
$Z=4$; the calculated density is $2.419 \mathrm{~g} . \mathrm{cm} .^{-3}$, the observed density $2 \cdot 42$ g.cm. ${ }^{-3}$ (Christ, 1953).

A composite projection on (010) of the electron-density sections is shown in Fig. 1. This shows clearly that there are infinite boron-oxygen chains running parallel to the a axis, the chain element being made up of a BO_{3} triangle and two BO_{4} tetrahedra forming a ring. The chain element has the composition $\left[\mathrm{B}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3}\right]^{-2}$. Each Ca^{++}is roughly octahedrally coordinated by 5 oxygens and 1 water molecule. The formula for colemanite may thus be written $\mathrm{CaB}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3} . \mathrm{H}_{2} \mathrm{O}$. The average $\mathrm{B}-\mathrm{O}$ bond length in the tetrahedra is $1 \cdot 4_{3} \AA$, and in the triangles is $1 \cdot 3_{7} \AA$. Ca^{++}has as nearest neighbors 5 oxygens and 1 water molecule at an average distance of $2 \cdot 4_{4} \AA$. The discrepancy factor R for the $h k 0$ zone is 25%.

This work was made possible only through the wholehearted cooperation of a number of people. G. J. Mowitt and Mrs Violet Rice made available the facilities of the U.S. Geological Survey IBM Section; Vincent Latorre of this Section was mainly responsible for the calculation of the electron-density sections. Mr Peter O'Hara of the Computation Laboratory of the National Bureau of Standards carried out most of the IBM calculations of the signs. As mentioned above, Drs Karle and Hauptman of the Naval Research Laboratory worked intensively with one of us (C.L.C) on the procedures for sign calculations. We are greatly indebted to all of these persons.

References

Christ, C. L. (1953). Amer. Min. 38, 411.
Hauptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. ACA Monograph No. 3. Wilmington: The Letter Shop.
Karle, J. \& Hauptman, H. (1953). Acta Cryst. 6, 473.

Acta Cryst. (1954). 7, 454

Divisors for converting $\sin ^{2} \theta$ for a standard wavelength.* By R. B. Russell, \dagger Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.
(Received 12 August 1952 and in revised form 23 January 1954)

In determining precision lattice parameters by X-ray diffraction (e.g. Cohen's method) it is common to use the $\sin ^{2} \theta$ form of the Bragg equation. It then becomes convenient to convert values of $\sin ^{2} \theta$ for several wavelengths to a value representing one standard wavelength for the purpose of calculation. We have found that a table listing divisors for converting $\sin ^{2} \theta\left(\lambda^{\prime}\right)$ to $\sin ^{2} \theta(\lambda)$, where λ is a desired standard wavelength, is very helpful in speeding computations by calculating machine. Such a table is based on the wavelengths in Angström units (Table 1) given by Lonsdale (1950), although of course the divisors apply also to calculations based on kX . units. Conversion divisors for these wavelengths, the ratio

[^0]| Table 1. Wavelengths of emission lines of certain elements | | | |
| :---: | :---: | :---: | :---: |
| Element | $K \alpha_{1}$ | $K \alpha_{2}$ | $K \beta_{1}$ |
| Cr | $2.28962 \AA$ | 2.29351 | $2.08480 \AA$ |
| Mn | 2.10175 | 2.10569 | 1.91015 |
| Fe | 1.93597 | 1.93991 | 1.75653 |
| Co | 1.78892 | 1.79278 | 1.62075 |
| Ni | 1.65784 | 1.66169 | 1.50010 |
| Cu | 1.54051 | 1.54433 | 1.39217 |
| Zn | 1.43511 | 1.43894 | 1.29522 |
| Ga | 1.34003 | 1.34394 | 1.20784 |
| Ge | 1.25401 | 1.25797 | 1.12890 |
| Mo | 0.70926 | 0.71354 | 0.63225 |
| Ag | 0.55936 | 0.56378 | 0.4970 l |

$\left(\lambda^{\prime} / \lambda\right)^{2}$, are listed in Table 2, and also, for convenience, the values of $\lambda^{2} / 3$ and $\lambda^{2} / 4$.

Reference

Lonsdale, K. (1950). Acta Cryst. 3, 400.
Table 2．Divisors for converting $\sin ^{2} \theta\left(\lambda^{\prime}\right)$ to $\sin ^{2} \theta(\lambda)$ ：the ratio $\left(\lambda^{\prime} / \lambda\right)^{2}$

16.755_{0}
6.812_{0}
3.891_{4}
$14 \cdot 118_{2}$
14.171_{2}

11.978_{8}
12.0277_{6}
9.8611_{1}

 ＂ が
 －
 1.0158_{7}
0.789491

毕

0.62197_{3}
0.63184_{2}
0.49104_{3}
on
0.0
0
0
0
0

た్ల్ల్
2.03507_{2}
2.04386_{4} 1.67043_{7}

1.50913_{1}
1.51662_{5}
1.23248_{8}

\qquad 2.45998_{8}
2.46922_{0}
2.03191_{7} सิํํ $\stackrel{+}{2}$
 $1.53058{ }_{0}$
1.53769_{8}
1.25317_{4} 1.32160_{0}
1.32816_{2}
 －
 0.875735_{5}
$0.881275{ }_{1}$
0.709711_{6}

Lonsdale（1950）． Ni $\stackrel{\lambda}{K} \alpha_{1}$ 1.90739_{9} 1.58140_{7} 60722 $1 \cdot 60722_{6}$
1.63255_{7}
1.32754_{6}皆： $1 \cdot 12260_{2}$
 0.955755_{6} 1
1.00465_{0}
0.818757_{3} 0.863463_{2}
0.867750_{7} 0.867750_{2}
0.7051789

 ＂た

 0.19409_{2} $0 \cdot 15191_{9}$
$0 \cdot 15432_{9}$
$0 \cdot 11993$
 Co $\stackrel{\lambda}{K} \alpha_{1}$ 1.63811_{7} 1.64368_{8}
1.35814_{8} 1.38032 $1 \cdot 38032_{2}$
$1 \cdot 38500_{2}$
$1 \cdot 14012_{2}$ \qquad

 0.85822 0.858822_{5}
0.862816_{0}
0.703167_{2}

 웅
 0.491383_{0}
0.494491_{4}
0.398225_{5} 0.15719_{2}
0.15909_{4}
0.12491_{0}
0.097769_{0}
0.099320_{2}
0.077187_{8} 1.06674_{5}
0.800058_{7}
 $\mathrm{Fe} \stackrel{\lambda}{K} \alpha_{1}$ 1.39871_{6} $\underset{1-15966_{3}}{1}$ $1 \cdot 17859_{6}$
1.18301_{9}
0.973503_{9}
 0.853855_{9}
0.857544_{7}
0.700865_{7} 0.733310_{6}
0.736720_{5} $0 \cdot 600403_{4}$ 0.633186_{7} 0.636330_{8}
0.517115_{2}
0.549506_{9} 0.552443_{8}
0.447599_{8} 0.479106_{2}
0.481906_{2} 0.389243_{7} 0.419570_{3}
 ～～ $0 \cdot 13584_{4}$
$0 \cdot 10665_{5}$ 0.083480_{6}
0.084805 －10 $1 \cdot 24932_{7}$
0.936995_{0}
 ～
 0.842626_{8}
0.845789_{0}
0.695998_{2}

 0.524274_{1}
0.526712_{0}
0.429253_{3} 0.452691_{4}
0.454939_{2}
0.369707_{0}
 ๗゙カ
 0.299968_{2}
0.301865_{7} 0.355991_{7}
0.358243_{6}
0.288502_{0} 0.11388_{0}
0.11525_{9}
0.090493_{1}
 $1 \cdot 47245_{1}$
$1 \cdot 10433_{8}$ \therefore
 $\operatorname{Mn~K} \alpha_{1}$
α_{2}
β_{1} Fe $K \alpha_{1}$

0.3559911_{2}
0.358243
0.288502$0.11388_{0}$
$0.11525{ }_{9}$
$0.090493_{1}$$1 \cdot 47245_{1}$
$1 \cdot 10433_{8}$
\square シे
0
0
0

 Cu α_{1}

$\mathrm{Zn} K \alpha_{1}$

 Ge $K \alpha_{1}$
α_{2}
β_{1} $.095958_{6}$
$.097120_{3}$
$.076251_{9}$
 0.059683_{7}
0.60630_{7}
0.047119_{8} 1.74745_{3}
1.310590 ＊In 10^{-16} 1.00375_{3} $K \alpha_{1}$
α_{2}
β_{1} Ni $K \alpha_{1}$

[^0]: * This work was done at the M.I.T. Metallurgical Project under U.S. Atomic Energy Commission Contract AT(30-1)-981. \dagger Present address: Hood Building, Project 6825, 155 Massachusetts Avenue, Cambridge, Massachusetts, U.S.A.

